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Womersley’s theory for pulsating flow in straight rigid tubes 
 
Governing equation 
Consider pulsating flow in a straight rigid tube and an annular fluid element of 
length dx, as shown in Figure 1. Forces due to pressure and fluid shear are 
shown.  

 
Assuming uniform flow (1st assumption), the balance of forces acting on the fluid 
element in the x-direction yields: 
 
  

€ 

ΣFx = m ⋅ax  (Newton’s 2nd law) 
 

⇒ P(2πrdr)− (P + ∂P
∂x

dx)(2πrdr)+τ (2πrdx)− (τ + ∂τ
∂r
dr)(2π (r + dr)dx) = ρ(2πrdrdx)∂v

∂t
 
 

⇒−
∂P
∂x
2πrdrdx −τ 2πdrdx − ∂τ

∂r
2πrdrdx − ∂τ

∂r
2πdr2dx = ρ(2πrdrdx)∂v

∂t
 

 

⇒−
∂P
∂x

r −τ − ∂τ
∂r
r = ρr∂v

∂t
 

 

⇒−
∂P
∂x

−
τ
r
−
∂τ
∂r

= ρ
∂v
∂t

 (1) 

 
If we further assume that the fluid in Newtonian (2nd assumption): 
 

τ = −µ
∂v
∂r

 (the minus sign comes from the imposed shear stress direction) 

 
Substituting for τ in Eq. (1), we obtain: 
 

−
∂P
∂x

+
µ
r
∂v
∂r

+µ
∂ 2v
∂r2

= ρ
∂v
∂t

 

 

x 

dx 

ro 
r 

dr 

  

€ 

P( 2πrdr ) (P + ∂P
∂x

dx)(2πrdr)

  

€ 

τ( 2πrdx )

(τ+∂τ
∂r
dr )(2π (r+dr )dx )

higher order term 
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⇒
∂ 2v
∂r2

+
1
r
∂v
∂r

−
1
ν
∂v
∂t

=
1
µ
∂P
∂x

 (2) 

 

where ν = µ
ρ

 is the kinematic viscosity of the fluid. At this point we make the 3rd 

(logical) assumption, stating that the pressure gradient is function of time only 

and not a function of the radius, r: ∂P
∂x

≠ f (r) . Eq. (2) is therefore a linear partial 

differential equation (P.D.E.) for the time and radius dependent velocity v(r,t). 
 
 
Solution 
Equation 2 is linear, which means the general solution can be a linear 
superposition of other solutions. This is useful for the treatment of periodic 
pressure gradient functions.  

 
So, if we assume (4th assumption) that the pressure gradient 

    

€ 

−
∂P
∂x

=
ΔP
ℓ

 is a 
periodic function, with period T, as shown in the figure above, we can express 
the pressure gradient in terms of a Fourier series: 
 
ΔP
ℓ
= A0 + A1 cos(ωt)+B1 sin(ωt)+ A2 cos(2ωt)+B2 sin(2ωt)+...  or 

 
ΔP
ℓ
=M0 +M1 cos(ωt +ϕ1)+M2 cos(ωt +ϕ2 )+...  

 

where M0 = A0 ,   

€ 

Mi = Ai
2 + Bi

2 , and tanϕi = −
Bi
Ai

 

 

ω =
2π
T

 is the circular frequency. For arterial pulses, it is in general true that 5 to 

10 harmonics suffice to describe the pulse. The amplitude of higher frequency 
harmonics is too small and can be neglected without introducing much error. 

T 

    

€ 

ΔP
ℓ

t 
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The solution for the zero-order harmonic is obviously Poiseuille’s law. Let us now 
consider the solution for a single harmonic pressure gradient. The general 
solution would be then a linear addition of Poiseuille’s solution for the zero-order 
term plus the solution for each harmonic. For a single harmonic: 
 
ΔP
ℓ
= Acos(ωt)+Bsin(ωt) = Re[(A− iB)(cosωt + isinωt)]= Re[A*eiωt ]  

 
where   

€ 

A* = A − iB is a complex pressure gradient and   

€ 

A*eiωt  is a complex oscillatory 
pressure gradient whose real part is equal to the actual pressure gradient. We 
may now replace 

    

€ 

ΔP
ℓ

 =
  

€ 

−
∂P
∂x

 by the complex oscillatory pressure gradient   

€ 

A*eiωt  in 
Eq. (2) to obtain: 
 
∂ 2v
∂r2

+
1
r
∂v
∂r

−
1
ν
∂v
∂t

= −
A*

µ
eiωt  (3) 

 
Obviously the solution to the above equation will be a complex number, whose 
real part will be the solution to the original linear equation (Eq. (2)). Let us now 
assume that the solution to Eq. (3) is given by a complex velocity v*(r,t) of the 
form: 
 
v*(r, t) = u(r)eiωt  
 
Hence, 
 
∂v*

∂t
= iωueiωt , ∂v

*

∂r
=
du
dr
eiωt , and ∂

2v*

∂r2
=
d 2u
dr2

eiωt . Substituting into Eq. (3) and 

dividing by   

€ 

eiωt  we obtain: 
 
d 2u
dr2

+
1
r
du
dr
−
iω
ν
u = − A

*

µ
 or 
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0 
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d 2u
dr2

+
1
r
du
dr
+
i3ω
ν
u = − A

*

µ
 (4) 

 
Eq. (4) is a linear 2nd order differential equation with a constant term on the right 
hand side. We first seek a general solution to the homogeneous equation 
 
d 2u
dr2

+
1
r
du
dr
+
i3ω
ν
u = 0  (5) 

 
and then we linearly add to the solution of the homogeneous equation a 
particular solution satisfying Eq. (4). The homogeneous equation (4) is the know 
Bessel equation of order zero, which has the following homogeneous solution: 
 

u =C1Jo(λr) , where λ 2 = i
3ω
ν

. For the particular solution, we set   

€ 

u = C2 , and 

substituting into Eq. (4) we obtain 
 
i3ωC2
ν

= −
A*

µ
⇒C2 = −

A*

µ
ν
i3ω

= −
A*

µ
µ

i3ρω
= −

A*

i3ρω
 

 
so that the general solution becomes 

u(r) =C1Jo(λr)−
A*

i3ρω
 (6) 

 
The constant C1 can be evaluated by application of the non-slip boundary 
condition at the wall: 
 

C1 =
A*

i3ρω
1

Jo(λro )
 

 
So the general solution (Eq. 6) becomes 
 

u(r) = A*

i3ρω
Jo(λr)
Jo(λro )

−1
"

#
$

%

&
'   

 

or, using the expressions for λ 2 = i
3ω
ν

, 
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u(r) = A*

iρω
1−

Jo(r
ω
ν
⋅ i3 2 )

Jo(ro
ω
ν
⋅ i3 2 )

#

$

%
%
%
%

&

'

(
(
(
(

 (7) 

 
We may now define the dimensionless Womersley parameter alpha (α) as 
 

α = ro
ω
ν
= ro

ωρ
µ

 

 
to rewrite Eq. (7) as 
 

u(r) = A*

iρω
1−

Jo(
r
ro
α ⋅ i3 2 )

Jo(α ⋅ i
3 2 )

#

$

%
%
%
%

&

'

(
(
(
(

 (8) 

 
The final solution for the velocity is the real part of v*(r, t) = u(r)eiωt , so that 
 

v(r, t) = Re A*

iρω
1−

Jo(
r
ro
α ⋅ i3 2 )

Jo(α ⋅ i
3 2 )

#

$

%
%
%
%

&

'

(
(
(
(

eiωt

#

$

%
%
%
%

&

'

(
(
(
(

 

 
Typical velocity profiles for different Womersley parameter values are given in 
the figure below. 
 

 
 

Velocity v(r,t) can be expressed in terms of amplitude and phase. The velocity 
profile shows that not all points along the radius move in phase. The phase 
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shift, β, between the velocity v(r,t) and the pressure gradient −∂P
∂x

(t) is given 

in the following figure. For Womersley numbers approaching zero, which 
means for viscous-dominated flows, the phase shift is near zero. For high 
Womersley numbers, i.e., for inertia-dominated flows, the phase shift tends to 
–90 degrees, which means that velocity lags pressure gradient by 90 
degrees. 

 
 
 
Flow is obtained by integrating the velocity profile over the arterial cross-

section, Q(t) = v(r, t) ⋅2πr dr
0

ro

∫ yielding 

 

Q(t) = πro
2A*

iωρ
1− 2J1(αi

3/2 )
αi3/2J0 (αi

3/2 )
"

#
$

%

&
'eiωt  (9) 

 
J0 and J1 are Bessel functions of order 0 and 1, respectively. The expression 
in the large parenthesis was termed [1- F10] by Womersley 
 

1−F10 =1−
2J1(αi

3/2 )
αi3/2J0 (αi

3/2 )
 

 
When the real part of the pressure gradient is written as   

€ 

M cos(ωt +ϕ ), Eq. 9 can 
be written as 
 

Q(t) = πro
2

ωρ
M[1−F10 ]sin(ωt +ϕ )  

 
To interpret the above equation we express [1- F10] in terms of its modulus 
(  

€ 

" M 10 ) and phase (  

€ 

ε10 ) 
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Q(t) = πro
2

ωρ
M !M10 sin(ωt +ϕ +ε10 )  

 
To allow comparison with Poiseuille’s equation, we substitute for the term 

α 2 =
ro
2ωρ
µ

 to obtain 

 

Q(t) = πro
4

µ
M !M10

α 2 sin(ωt +ϕ +ε10 )  

 
The parameters   

€ 

" M 10  and   

€ 

ε10  are given in tables and graphically in the figure 
below. 
 

 
 
 

We note that as α→ 0 , !M10

α 2 →
1
8

 and ε10 → 90o  so that  

 

Q(t) = πro
4

8µ
M cos(ωt +ϕ )  

 
which is effectively Poisseuille’s law. 
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Since the heart does not generate a single harmonic but a series of 
harmonics, so that the flow profile in vivo is very complex. Experiments have 
shown that Womersley’s theory is accurate.  
 

Physiological and clinical relevance 
Womersley’s oscillatory flow theory reduces to Poiseuille’s law for very low α. 
This means that in the periphery with small blood vessels (small r) and little 
oscillation, there is no need for the oscillatory flow theory and we can 
describe the pressure-flow relation with Poiseuille’s law. For the very large 
conduit arteries, where α>10, friction does not play a significant role and the 
pressure-flow relation can be described with inertance alone. For α values in 
between, the combination of the resistance plus the inductance approximates 
the oscillatory pressure-flow relations.  
   Models of the entire arterial system have indicated that, even in the 
intermediately sized arteries, the oscillatory flow effects on velocity profiles 
are not large. The main effects are due to branching, non-uniformity and 
bending of the blood vessels etc. Thus for global hemodynamics, i.e., wave 
travel, input impedance, windkessel models etc. a segment of artery can be 
described by a series arrangement of a Poiseuille resistance and inductance 
(inertia). 

   The oscillatory flow theory is, however, of importance when local phenomena 
are studied. For instance detailed flow profiles and the calculation of shear stress 
at the vascular wall require the oscillatory flow theory. 
 
 
 
 


