Womersley’s theory for pulsating flow in straight rigid tubes

Governing equation
Consider pulsating flow in a straight rigid tube and an annular fluid element of
length dx, as shown in Figure 1. Forces due to pressure and fluid shear are
shown. q
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Assuming uniform flow (1% assumption), the balance of forces acting on the fluid
element in the x-direction yields:

SF, =m-a, (Newton’s 2" law)

= PQardr)-(P+ Z—P dx)2nardr)+tQardx)- (Tt + Z—T dr)2a(r +dr)dx) = p(2ﬂrdrdx)?
X r t

p haigher order term P
= - b 2ardrdx — t2mdrdx — a—r2nrdrdx - _TWX = p(ZJrrdrdx)a—v
t

ox or or
JP ot ov

=y —T——7F=p0r—
ox or ot

-2 -2 p2 (1)
If we further assume that the fluid in Newtonian (2" assumption):

T= —M? (the minus sign comes from the imposed shear stress direction)
r

Substituting for zin Eq. (1), we obtain:
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where v =~ is the kinematic viscosity of the fluid. At this point we make the 3™

0
(logical) assumption, stating that the pressure gradient is function of time only

and not a function of the radius, r: Z—P#f(r). Eq. (2) is therefore a linear partial
X

differential equation (P.D.E.) for the time and radius dependent velocity v(r, ).

Solution

Equation 2 is linear, which means the general solution can be a linear
superposition of other solutions. This is useful for the treatment of periodic
pressure gradient functions.
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So, if we assume (4™ assumption) that the pressure gradient -%=% isa

periodic function, with period T, as shown in the figure above, we can express
the pressure gradient in terms of a Fourier series:

ATP = A, + A cos(wt) + B, sin(wt) + A, cos(2wt) + B, sin(2wt) +... or

ATP =M, +M, cos(wt+@,)+M,cos(wt+@,)+...

where M, = A,, M, =A? +B? , and tang, =—%

i

W= 277[ is the circular frequency. For arterial pulses, it is in general true that 5 to

10 harmonics suffice to describe the pulse. The amplitude of higher frequency
harmonics is too small and can be neglected without introducing much error.
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The solution for the zero-order harmonic is obviously Poiseuille’s law. Let us now
consider the solution for a single harmonic pressure gradient. The general
solution would be then a linear addition of Poiseuille’s solution for the zero-order
term plus the solution for each harmonic. For a single harmonic:

ATP = Acos(wt) + Bsin(wt) = Re[(A —iB)(coswt +isinwt)] = Re[A e™ ]

where A" - A-iB is a complex pressure gradient and A’e™ is a complex oscillatory

pressure gradient whose real part is equal to the actual pressure gradient. We

may now replace % =P by the complex oscillatory pressure gradient A’e™ in

ox
Eq. (2) to obtain:
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Obviously the solution to the above equation will be a complex number, whose
real part will be the solution to the original linear equation (Eq. (2)). Let us now
assume that the solution to Eq. (3) is given by a complex velocity v (r,t) of the
form:

Vv (r,t) =u(r)e™

Hence,
W i, P2 o ang OV 247U o gupstituting into Eq. (3) and
ot or dr or dr

dividing by ¢ we obtain:



2 .3
d_z‘J,l@Jrﬂu:_A_ (4)
dr” rdr v u

Eq. (4) is a linear 2" order differential equation with a constant term on the right
hand side. We first seek a general solution to the homogeneous equation
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and then we linearly add to the solution of the homogeneous equation a
particular solution satisfying Eq. (4). The homogeneous equation (4) is the know
Bessel equation of order zero, which has the following homogeneous solution:

.3
u=CJ,(Ar), where A° = % Forthe particular solution, we set u-c,, and

v
substituting into Eq. (4) we obtain
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so that the general solution becomes
A*
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The constant C; can be evaluated by application of the non-slip boundary
condition at the wall:
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So the general solution (Eq. 6) becomes

u(r) = 3A J,(Ar) 1
i*pw|J (Ar)
Pw
or, using the expressions for A*> =——,
1%
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We may now define the dimensionless Womersley parameter alpha (a) as

amr 2 =r, [
4 u

to rewrite Eq. (7) as

I (Ca i)

A r
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u(r) ipw J, (o i3/2) ®)

The final solution for the velocity is the real part of v'(r,t) = u(r)e™, so that

- J,(Eai?)
v(r,) = Re|-——|1-—"— |
ipw J (a-i"")

Typical velocity profiles for different Womersley parameter values are given in
the figure below.

Velocity v(r,t) can be expressed in terms of amplitude and phase. The velocity
profile shows that not all points along the radius move in phase. The phase
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shift, B, between the velocity v(r,t) and the pressure gradient —Z—P () is given
X

in the following figure. For Womersley numbers approaching zero, which
means for viscous-dominated flows, the phase shift is near zero. For high
Womersley numbers, i.e., for inertia-dominated flows, the phase shift tends to
—90 degrees, which means that velocity lags pressure gradient by 90
degrees.
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Flow is obtained by integrating the velocity profile over the arterial cross-

section, O(1) = f v(r,t)-2mrdryielding
0
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Jo and J; are Bessel functions of order 0 and 1, respectively. The expression
in the large parenthesis was termed [1- F4g] by Womersley
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When the real part of the pressure gradient is written as M cos(ot +¢), EQ. 9 can
be written as

2
"o M[1-F,sin(ot +¢)
wp

JT
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To interpret the above equation we express [1- Fyo] in terms of its modulus
(m;,) and phase (&49)
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To allow comparison with Poiseuille’s equation, we substitute for the term

2
o =2%P o obtain
u

4 i
M .
o) = ”!:" M alzo sin(wt + @ +¢,,)

The parameters wm;, and ¢,, are given in tables and graphically in the figure
below.

We note thatas a —0, M‘2° —>% and g, —90° so that
a

art
8u

o(t)= M cos(wt + @)

which is effectively Poisseuille’s law.



Since the heart does not generate a single harmonic but a series of
harmonics, so that the flow profile in vivo is very complex. Experiments have
shown that Womersley’s theory is accurate.

Physiological and clinical relevance

Womersley’s oscillatory flow theory reduces to Poiseuille’s law for very low a.
This means that in the periphery with small blood vessels (small r) and little
oscillation, there is no need for the oscillatory flow theory and we can
describe the pressure-flow relation with Poiseuille’s law. For the very large
conduit arteries, where a>10, friction does not play a significant role and the
pressure-flow relation can be described with inertance alone. For a values in
between, the combination of the resistance plus the inductance approximates
the oscillatory pressure-flow relations.

Models of the entire arterial system have indicated that, even in the
intermediately sized arteries, the oscillatory flow effects on velocity profiles
are not large. The main effects are due to branching, non-uniformity and
bending of the blood vessels etc. Thus for global hemodynamics, i.e., wave
travel, input impedance, windkessel models etc. a segment of artery can be
described by a series arrangement of a Poiseuille resistance and inductance
(inertia).

The oscillatory flow theory is, however, of importance when local phenomena
are studied. For instance detailed flow profiles and the calculation of shear stress
at the vascular wall require the oscillatory flow theory.



